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Abstract

We present a single step, second-order accurate Godunov scheme for ideal MHD which is an extension of the method
described in [T.A. Gardiner, J.M. Stone, An unsplit godunov method for ideal MHD via constrained transport, J. Com-
put. Phys. 205 (2005) 509] to three dimensions. This algorithm combines the corner transport upwind (CTU) method of
Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free
constraint on the magnetic field. We describe the calculation of the PPM interface states for 3D ideal MHD which must
include multidimensional ‘‘MHD source terms” and naturally respect the balance implicit in these terms by the $ � B ¼ 0
condition. We compare two different forms for the CTU integration algorithm which require either 6- or 12-solutions of
the Riemann problem per cell per time-step, and present a detailed description of the 6-solve algorithm. Finally, we present
solutions for test problems to demonstrate the accuracy and robustness of the algorithm.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In a previous paper [1], we described a two-dimensional (2D), second-order accurate Godunov method for
ideal MHD that evolves the magnetic field using the constrained transport (CT) [11] algorithm for preserving
the divergence-free constraint on the magnetic field. In its simplest form, CT requires area-averaged values of
the magnetic field which are stored at cell faces. We argued that this is the most natural discrete representation
of the field in that the integral form of the induction equation is based on area (rather than volume) averages,
and therefore, the discrete form of the equations should respect this difference. There are three important
ingredients to our MHD algorithm: (1) a modification of the piecewise parabolic method (PPM) [8] recon-
struction step used to construct time-advanced estimates of the conserved variables on cell faces that are
fed to the Riemann solver to incorporate multidimensional terms essential in MHD, (2) a new method for con-
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structing the fluxes (at cell edges) of the area-averaged magnetic fields (at cell faces) from the fluxes returned by
the Riemann solver (at cell faces) of volume-averaged magnetic fields (at cell centers) which are based on the
fundamental relationship between the area- and volume-averaged variables, and (3) a directionally unsplit
integration algorithm based on the corner transport upwind (CTU) method [7].

Through a series of test problems (in particular, the advection of 2D field loops) we showed that our new
methods for constructing the fluxes needed by the CT algorithm are essential for stability. Moreover, by using
the second-order accurate CTU integration algorithm, we showed a method could be constructed which has
less numerical dissipation and has the important property of reducing exactly to the one-dimensional (1D)
algorithm for plane-parallel, grid-aligned flows. Since CT does not require costly solutions to elliptic equa-
tions, we expect MHD Godunov schemes based on CT to be more cost effective that those that use diver-
gence-cleaning [9,19]. Given the attractive properties of the method, it is of interest to extend it to three-
dimensions (3D) for use in applications.

When directional splitting is used, the extension of Godunov methods from 2D to 3D is usually trivial.
However, directional splitting is unsuitable for MHD, because it is impossible to enforce the divergence-free
constraint between partial updates unless all three components of the magnetic field are updated together,
which in turn violates the assumption basic to splitting that each dimensional operator is independent and
can be split from the others. As a result, in [1] we adopted the unsplit CTU integration scheme. Even in hydro-
dynamics, the extension of CTU to 3D is not trivial [17]. For our MHD algorithm, extension to 3D requires
modifying two of the three ingredients of the method, in particular (1) the PPM reconstruction algorithm must
be modified to include multidimensional terms for MHD in such a way as to respect a balance law implied by
the $ � B ¼ 0 condition, and (2) the CTU algorithm must be modified to include source terms as well as the
transverse flux gradient terms. The primary purpose of this paper is to describe in detail these modifications
and to demonstrate that the resulting algorithm is both accurate and robust.

We extend our MHD test suite to 3D to demonstrate the accuracy and fidelity of our method. We find that,
once again, the passive advection of a multidimensional field loop is a challenging test of finite volume meth-
ods for MHD. In particular, for a field loop confined to the ðx; yÞ-plane in 3D advected with a constant veloc-
ity with vz 6¼ 0, the vertical component of the magnetic field Bz will evolve unless care is made to ensure the
multidimensional balance of MHD source terms in both the PPM characteristic tracing step and the trans-
verse flux gradient update step. In fact, this observation leads to a useful definition of the appropriate differ-
ence stencil on which the divergence-free constraint must be maintained. If $ � B ¼ 0 on a stencil which is
different from that used to construct the fluxes of Bz, the latter will show unphysical evolution in this test
for conservative algorithms. For the same reason, if a numerical method keeps Bz constant to round-off error
on the test, it must preserve the divergence-free constraint on the appropriate stencil. Moreover, this test is
another demonstration that it is essential to maintain the divergence-free constraint exactly in MHD, as
was originally emphasized by [6]. This test, along with several others are presented in Section 6.

The paper is organized as follows. In Section 2, we write down the equations of ideal MHD solved by our
method. In Section 3, we describe our extension of the PPM reconstruction algorithm to 3D MHD. In Section
4 we describe two formulations for the CTU integration algorithm in 3D, in Section 5 we present results from
a 3D test suite, and in Section 6 we conclude.

2. Ideal magnetohydrodynamics and constrained transport

The equations of ideal magnetohydrodynamics (MHD) can be written in conservative form as
oq
ot
þ $ � ðqvÞ ¼ 0; ð1Þ

oqv

ot
þ $ � ðqvv� BBÞ þ $P � ¼ 0; ð2Þ

oB

ot
þ $� ðB� vÞ ¼ 0; ð3Þ

oE
ot
þ $ � ððE þ P �Þv� BðB � vÞÞ ¼ 0; ð4Þ
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where q is the mass density, qv the momentum density, B the magnetic field, and E the total energy density.
The total pressure P � � P þ ðB � BÞ=2 where P is the gas pressure. This system of equations is closed with the
addition of an equation of state which relates the pressure and density to the internal energy:
� � E � qðv � vÞ=2� ðB � BÞ=2: ð5Þ

Throughout this paper, we will assume an ideal gas equation of state for which P ¼ ðc� 1Þ�, where c is the

ratio of specific heats. Note that we have chosen a system of units in which the magnetic permeability l ¼ 1.
In this paper, we will assume a regular, 3D, Cartesian grid. We will use the standard notation that grid cell

ði; j; kÞ is centered at ðxi; yj; zkÞ and has a size ðdx; dy; dzÞ. Time levels will be denoted by a superscript and inter-
face values will be denoted by half increments to the index, e.g. the volume-averaged x-component of the mag-
netic field at time tn is defined to be
Bn
x;i;j;k �

1

2
ðBn

x;i�1=2;j;k þ Bn
x;iþ1=2;j;kÞ: ð6Þ
3. Calculating the interface states

The PPM interface state algorithm is based upon the idea of dimensional splitting, and as a result it is a 1D
algorithm including both spatial reconstruction and a characteristic evolution of the linearized system in prim-
itive variables. For ideal MHD, however, it was shown in [1] that it is necessary to include multidimensional
terms when calculating the interface states. The 3D interface state algorithm is thus a generalization of the 2D
algorithm which for consistency must reduce to the 2D and 1D algorithm in the appropriate limits. The inter-
face states in the PPM algorithm are typically calculated by evolving the system of equations in primitive vari-
ables. Consider the induction equation (4) for the z-component of the magnetic field
oBz

ot
þ o

ox
ðvxBz � BxvzÞ þ

o

oy
ðvyBz � ByvzÞ ¼ 0: ð7Þ
The terms proportional to oBx=ox and oBy=oy (and those proportional to oBz=oz in the equations for the
other two components) we refer to as ‘‘MHD source terms”. (When the system of equations for MHD is writ-
ten in primitive variables, these source terms only appear in the induction equation. As a result we will not
discuss the remaining MHD equations in this section.) The question before us is: which terms in the induction
equation need to be included in the calculation of the interface states? In what follows we specialize to the
calculation of the x-interface states; the y- and z-interface state calculation follows by symmetry.
3.1. 3D MHD interface state algorithm

A comprehensive description of the 2D MHD interface state algorithm is provided in Section 3.1 of [1]. The
most important point to note here is that the balance of the MHD source terms resulting from the $ � B ¼ 0
condition must be accurately represented in the calculation of the interface states. The 3D interface algorithm
is constructed explicitly to incorporate the potential balance between the MHD source terms and to reduce
exactly to the 2D interface states algorithm in the limit that the problems is 2D and grid-aligned. The essential
idea is to rewrite the induction equation as follows prior to applying the idea of directional splitting:
oBx

ot
þ o

oy
ðvyBx � ByvxÞ � vxLxy

oBz

oz

� �� �
þ o

oz
ðvzBx � BzvxÞ � vxLxz

oBy

oy

� �� �
¼ 0; ð8Þ

oBy

ot
þ o

ox
ðvxBy � BxvyÞ � vyLyx

oBz

oz

� �� �
þ o

oz
ðvzBy � BzvyÞ � vyLyz

oBx

ox

� �� �
¼ 0; ð9Þ

oBz

ot
þ o

ox
ðvxBz � BxvzÞ � vzLzx

oBy

oy

� �� �
þ o

oy
ðvyBz � ByvzÞ � vzLzy

oBx

ox

� �� �
¼ 0; ð10Þ
where we have added a limited amount of the transverse MHD source term to each component of the electric
field gradient and grouped terms according to the fashion in which they will be split. The mathematical form
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of the limiter functions, e.g. Lxy , is determined by imposing constraints on the directionally split and unsplit
system. Clearly, to recover the induction equation we have
Lxy
oBz

oz

� �
¼ �Lxz

oBy

oy

� �
; ð11Þ
etc. Directionally split, we obtain the following system for the x-coordinate direction:
oBx

ot
¼ 0; ð12Þ

oBy

ot
þ o

ox
ðvxBy � BxvyÞ � vyLyx

oBz

oz

� �
¼ 0; ð13Þ

oBz

ot
þ o

ox
ðvxBz � BxvzÞ � vzLzx

oBy

oy

� �
¼ 0: ð14Þ
To determine the form of the limiter functions, we minimize the magnitude of the sum of the MHD source
terms. For Eq. (14) we find
Lzx
oBy

oy

� �
¼ minmod � oBx

ox
;
oBy

oy

� �
; ð15Þ
where the minmod function is defined as
minmodðx; yÞ ¼
signðxÞminðjxj; jyjÞ if xy > 0;

0 otherwise:

�
ð16Þ
Note that this limiter function satisfies the constraint identified in Eq. (11). The mathematical form of the
remaining limiter functions in Eqs. (8)–(10) is given by cyclic permutation of ðx; y; zÞ in Eq. (15) and applica-
tion of the constraint noted in Eq. (11).

There is also a simple physical argument for why the limiter function takes the form described by Eq. (15).
Considering Eq. (7), if ðoBx=oxÞ and ðoBy=oyÞ have opposite signs, but not necessarily the same magnitude we
wish to incorporate the balance of these two MHD source terms by adding and subtracting the term with the
smaller magnitude so that the resulting (reduced) MHD source term is associated with only one of the flux
gradients. If, on the other hand, these derivatives have the same sign, then there is no balance between the
source terms and the induction equation should be unmodified. This is precisely the result of the minmod lim-
ited source term in Eq. (15).

Finally, we note that using the properties of the minmod function and the $ � B ¼ 0 condition, Eqs. (12)–
(14) can be simplified to
oBx

ot
¼ 0; ð17Þ

oBy

ot
þ o

ox
ðvxByÞ � Bx

ovy

ox
� vy minmod

oBx

ox
;� oBy

oy

� �
¼ 0; ð18Þ

oBz

ot
þ o

ox
ðvxBzÞ � Bx

ovz

ox
� vz minmod

oBx

ox
;� oBz

oz

� �
¼ 0 ð19Þ
for calculating the x-interface states. As a practical matter, these limited MHD source terms are evaluated in
terms of the cell average of the magnetic field gradients, i.e. for Eq. (19) in cell ði; j; kÞ we use
minmod
Bx;iþ1=2;j;k � Bx;i�1=2;j;k

dx
;
Bz;i;j;k�1=2 � Bx;i;j;kþ1=2

dz

� �
: ð20Þ
The equations for the y- and z-interface states follow from cyclic permutations of ðx; y; zÞ. In the limiting 2D
case of either o=oy ¼ 0 or o=oz ¼ 0 this approach reduces to the interface state algorithm outlined in [1]. More-
over, in the limiting 2D case of o=ox ¼ 0, the x-interface state will equal the cell center state, just what one
expects from 1D and 2D calculations.
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4. Corner transport upwind algorithm

The CTU algorithm originally described by Colella [7] is an unsplit, 2D finite volume algorithm for solving
hyperbolic systems of conservation laws. The 3D generalization of the CTU algorithm was subsequently pre-
sented by Saltzman [17]. In this section, we present two variants of the 3D CTU integration algorithm. In Sec-
tion 4.1, we present a brief, functional description of the algorithm described by Saltzman [17] which we refer
to here as the 12-solve algorithm since it requires 12 solutions to the Riemann problem per zone per time-step.
However, because of its complexity, we will not present the algorithmic elements for the 12-solve MHD CTU
algorithm in detail. In Section 4.2, we present a simple variant which requires only 6 solutions to the Riemann
problem per zone per time-step and describe this 6-solve algorithm in detail. We summarize with a discussion
of the strengths and weaknesses of this algorithm relative to the 12-solve CTU algorithm as a prelude to Sec-
tion 5 where we present a variety of results for both.

For both the 6-solve and 12-solve algorithms, an algorithm for constructing the grid cell edge averaged elec-
tric fields from the Godunov fluxes is needed. This algorithm is typically referred to as a CT algorithm. It can
be described as a predictor/corrector process where the Godunov electric fields are the predictor values and the
resulting CT electric fields are the corrector values. In [1], a simple framework for constructing CT algorithms
was presented and a few CT algorithms were constructed and tested. In this paper, we adopt the Ec CT algo-
rithm defined by Eqs. (41) and (50) in [1], as it was shown to have the best properties. The Ec CT algorithm is
constructed in such a way as contain an upwind bias (according to the contact mode) and to reduce to the
correct Godunov EMF for grid-aligned, plane-parallel flows. Details of the algorithm is given in [1] and will
not be repeated here.

4.1. 12-Solve CTU

We begin by choosing a numerical flux function F ðqL; qRÞ which is assumed to return a suitably accurate
solution for the flux obtained by solving the Riemann problem associated with qL and qR, the left and right
states. The 12-solve CTU algorithm can then be described as follows (see [7,14,17]).

Step 1, calculate the left and right PPM interface states q�Lx;iþ1=2;j;k; q
�
Rx;iþ1=2;j;k and the associated interface

flux
F �x;iþ1=2;j;k ¼ F xðq�Lx;iþ1=2;j;k; q
�
Rx;iþ1=2;j;kÞ ð21Þ
with similar expressions for the y- and z-direction fluxes.
Step 2, for each interface state calculate two interface states evolved by dt=3 of a single transverse flux gra-

dient, i.e.
q�jyLx;iþ1=2;j;k ¼ q�Lx;iþ1=2;j;k þ
dt

3dy
ðF �y;i;j�1=2;k � F �y;i;jþ1=2;kÞ; ð22Þ

q�jyRx;iþ1=2;j;k ¼ q�Rx;iþ1=2;j;k þ
dt

3dy
ðF �y;iþ1;j�1=2;k � F �y;iþ1;jþ1=2;kÞ; ð23Þ

q�jzLx;iþ1=2;j;k ¼ q�Lx;iþ1=2;j;k þ
dt

3dz
ðF �z;i;j;k�1=2 � F �z;i;j;kþ1=2Þ; ð24Þ

q�jzRx;iþ1=2;j;k ¼ q�Rx;iþ1=2;j;k þ
dt

3dz
ðF �z;iþ1;j;k�1=2 � F �z;iþ1;j;kþ1=2Þ ð25Þ
with y- and z-interface states being defined in an equivalent manner by cyclic permutation of ðx; y; zÞ and
ði; j; kÞ. For each of the dt=3 updated interface states, calculate the associated flux, giving the two x-interface
fluxes
F �jyx;iþ1=2;j;k ¼ F x q�jyLx;iþ1=2;j;k; q
�jy
Rx;iþ1=2;j;k

� �
; ð26Þ

F �jzx;iþ1=2;j;k ¼ F x q�jzLx;iþ1=2;j;k; q
�jz
Rx;iþ1=2;j;k

� �
ð27Þ
and similar expressions for the y- and z-interface fluxes.



4128 T.A. Gardiner, J.M. Stone / Journal of Computational Physics 227 (2008) 4123–4141
Step 3, at each interface evolve the PPM interface states by dt=2 of the transverse flux gradients, i.e.
qnþ1=2
Lx;iþ1=2;j;k ¼ q�Lx;iþ1=2;j;k þ

dt
2dy

F �jzy;i;j�1=2;k � F �jzy;i;jþ1=2;k

� �
ð28Þ

þ dt
2dz

F �jyz;i;j;k�1=2 � F �jyz;i;j;kþ1=2

� �
; ð29Þ

qnþ1=2
Rx;iþ1=2;j;k ¼ q�Rx;iþ1=2;j;k þ

dt
2dy

F �jzy;iþ1;j�1=2;k � F �jzy;iþ1;jþ1=2;k

� �
ð30Þ

þ dt
2dz

F �jyz;iþ1;j;k�1=2 � F �jyz;iþ1;j;kþ1=2

� �
ð31Þ
with y- and z-interface states being defined in an equivalent manner by cyclic permutation of ðx; y; zÞ and
ði; j; kÞ. For each of the dt=2 updated interface states, calculate the associated flux, giving the x-interface flux
F nþ1=2
x;iþ1=2;j;k ¼ F x qnþ1=2

Lx;iþ1=2;j;k; q
nþ1=2
Rx;iþ1=2;j;k

� �
ð32Þ
and similar expressions for the y- and z-interface fluxes.
Step 4, update the conserved variables from time n to nþ 1 via the fully corner coupled numerical

fluxes
qnþ1
i;j;k ¼ qn

i;j;k þ
dt
dx

F nþ1=2
x;i�1=2;j;k � F nþ1=2

x;iþ1=2;j;k

� �
ð33Þ

þ dt
dy

F nþ1=2
y;i;j�1=2;k � F nþ1=2

y;i;jþ1=2;k

� �
þ dt

dz
F nþ1=2

z;i;j;k�1=2 � F nþ1=2
z;i;j;kþ1=2

� �
: ð34Þ
This completes the description of the 12-solve CTU algorithm for a typical system of conservation laws,
such as Euler’s equations. Unfortunately, as written above, the 12-solve CTU algorithm does not result in
a useful method for ideal MHD. This can be understood on rather general grounds by noting that the inter-
mediate steps in the algorithm use partial updates based on a dimensional splitting of the equations in con-
servation form. This in turn ignores the potential balance between flux gradients in different directions (in
particular MHD source terms associated with those flux gradients) which is always present for MHD owing
to the $ � B ¼ 0 constraint.

To make this point more concrete, note that the parallel flux gradient terms (x-flux gradient at x-interfaces,
etc.) are included in the PPM interface states algorithm using the dimensionally split, primitive form of the
equations for MHD. Meanwhile, the transverse flux gradient terms are included using the conservative form
of the equations. Since the dimensionally split primitive and conservative form of the equations for MHD are
not commensurate, this amounts to neglecting certain MHD source terms resulting in a formally first-order
accurate integration algorithm. In addition, such an algorithm would also show secular evolution of a mag-
netic field component perpendicular to the magnetic field loop in the gedanken experiment discussed in [1] and
Section 1.

For the 3D 12-solve CTU algorithm, with two predictor steps, the source term correction procedure
required to provide balance to the flux gradient terms is increasingly complicated. The advantage of 12-solve
CTU algorithm is that it is optimally stable for CFL numbers 6 1. The disadvantage is that the algorithm is
complicated. We have implemented the 12-solve MHD CTU algorithm as described above and present results
of tests of the method in Section 5. However, the complexity of the method motivates us to find a simpler alter-
native, which we describe below.
4.2. 6-Solve CTU variant for MHD

For Euler’s equations, the 6-solve algorithm can be described concisely as the 12-solve CTU algorithm of
Section 4.1 omitting step 2 and replacing F �jyx;iþ1=2;j;k and F �jzx;iþ1=2;j;k with F �x;iþ1=2;j;k (and similarly for the y- and z-
fluxes) in step 3. Alternatively, one may also describe it as a formal extension of the 2D CTU algorithm in
which the parallel and transverse flux gradients are included in the interface states in a two-step process.
The algorithm consists of the following steps.



T.A. Gardiner, J.M. Stone / Journal of Computational Physics 227 (2008) 4123–4141 4129
Step 1, calculate the left and right PPM interface states q�Lx;iþ1=2;j;k and q�Rx;iþ1=2;j;k including the MHD source
terms described in Section 3.1 and the associated interface flux
F �x;iþ1=2;j;k ¼ F xðq�Lx;iþ1=2;j;k; q
�
Rx;iþ1=2;j;kÞ ð35Þ
with similar expressions for the y- and z-direction fluxes.
Step 2, apply the CT algorithm of [1] to calculate the CT electric fields E�x;i;jþ1=2;kþ1=2; E

�
y;iþ1=2;j;kþ1=2 and

E�z;iþ1=2;jþ1=2;k using the numerical fluxes from step 1 and a cell center reference electric field calculated using
the initial data at time level n, i.e. qn

i;j;k.
Step 3, at each interface evolve the PPM interface states by dt=2 of the transverse flux gradients. The hydro-

dynamic variables (mass, momentum and energy density) are advanced using
qnþ1=2
Lx;iþ1=2;j;k ¼ q�Lx;iþ1=2;j;k þ

dt
2dy
ðF �y;i;j�1=2;k � F �y;i;jþ1=2;kÞ þ

dt
2dz
ðF �z;i;j;k�1=2 � F �z;i;j;kþ1=2Þ þ

dt
2

Sx;i;j;k; ð36Þ

qnþ1=2
Rx;iþ1=2;j;k ¼ q�Rx;iþ1=2;j;k þ

dt
2dy
ðF �y;iþ1;j�1=2;k � F �y;iþ1;jþ1=2;kÞ þ

dt
2dz
ðF �z;iþ1;j;k�1=2 � F �z;iþ1;j;kþ1=2Þ þ

dt
2

Sx;iþ1;j;k;

ð37Þ
where the x-interface MHD source term for the momentum density
ðSx;i;j;kÞqv ¼ Bi;j;k
oBx

ox

� �
i;j;k

ð38Þ
and the energy density
ðSx;i;j;kÞEðByvyÞi;j;kminmod � oBz

oz
;
oBx

ox

� �
i;j;k

þ ðBzvzÞi;j;kminmod � oBy

oy
;
oBx

ox

� �
i;j;k

: ð39Þ
The magnetic field components are evolved using the CT electric fields in place of the predictor fluxes.
The interface normal component of the magnetic field is evolved using the integral form of the Stokes
loop:
Bnþ1=2
x;iþ1=2;j;kBn

x;iþ1=2;j;k �
dt

2dy
ðE�z;iþ1=2;jþ1=2;k � E�z;iþ1=2;j�1=2;kÞ þ

dt
2dz
ðE�y;iþ1=2;j;kþ1=2 � E�y;iþ1=2;j;k�1=2Þ: ð40Þ
The y-component of the magnetic field is evolved using
ðByÞnþ1=2
Lx;iþ1=2;j;k ¼ ðByÞ�Lx;iþ1=2;j;k �

dt
4dz
ðE�x;i;jþ1=2;kþ1=2 � E�x;i;jþ1=2;k�1=2Þ

� dt
4dz
ðE�x;i;j�1=2;kþ1=2 � E�x;i;j�1=2;k�1=2Þ þ

dt
2
ðSx;i;j;kÞBy

; ð41Þ

ðByÞnþ1=2
Rx;iþ1=2;j;k ¼ ðByÞ�Rx;iþ1=2;j;k �

dt
4dz
ðE�x;iþ1;jþ1=2;kþ1=2 � E�x;iþ1;jþ1=2;k�1=2Þ

� dt
4dz
ðE�x;iþ1;j�1=2;kþ1=2 � E�x;iþ1;j�1=2;k�1=2Þ þ

dt
2
ðSx;iþ1;j;kÞBy

ð42Þ
with
ðSx;i;j;kÞBy
¼ ðvyÞi;j;kminmod � oBz

oz
;
oBx

ox

� �
i;j;k

: ð43Þ
The z-component of the magnetic field is evolved using
ðBzÞnþ1=2
Lx;iþ1=2;j;k ¼ ðBzÞ�Lx;iþ1=2;j;k þ

dt
4dy
ðE�x;i;jþ1=2;kþ1=2 � E�x;i;j�1=2;kþ1=2Þ

þ dt
4dy
ðE�x;i;jþ1=2;k�1=2 � E�x;i;j�1=2;k�1=2Þ þ

dt
2
ðSx;i;j;kÞBz

; ð44Þ
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ðBzÞnþ1=2
Rx;iþ1=2;j;k ¼ ðBzÞ�Rx;iþ1=2;j;k þ

dt
4dy
ðE�x;iþ1;jþ1=2;kþ1=2 � E�x;iþ1;j�1=2;kþ1=2Þ

þ dt
4dy
ðE�x;iþ1;jþ1=2;k�1=2 � E�x;iþ1;j�1=2;k�1=2Þ þ

dt
2
ðSx;iþ1;j;kÞBz

ð45Þ
with
ðSx;i;j;kÞBz
¼ ðvzÞi;j;kminmod � oBy

oy
;
oBx

ox

� �
i;j;k

: ð46Þ
Note that the origin of these MHD source terms for the transverse components of the magnetic field can be
clearly seen as resulting from the directional splitting of the induction equation described in Section 3.1. The
momentum and energy density MHD source terms originate from the use of the primitive variable form of the
MHD equations to calculate the PPM interface states. The y- and z-interface states are advanced in an equiv-
alent manner by cyclic permutation of ðx; y; zÞ and ði; j; kÞ in the above expressions.

Step 4, for each of the dt=2 updated interface states, calculate the associated flux, giving the x-interface flux
F nþ1=2
x;iþ1=2;j;k ¼ F x qnþ1=2

Lx;iþ1=2;j;k; q
nþ1=2
Rx;iþ1=2;j;k

� �
ð47Þ
and similar expressions for the y- and z-interface fluxes.
Step 5, apply the CT algorithm of [1] to calculate the CT electric fields E

nþ1=2
x;i;jþ1=2;kþ1=2, E

nþ1=2
y;iþ1=2;j;kþ1=2 and

E
nþ1=2
z;iþ1=2;jþ1=2;k using the numerical fluxes from step 4 and a cell center reference electric field calculated using

the cell average state at time level nþ 1=2 which is calculated as follows. The cell center magnetic field com-
ponents are defined as equaling the arithmetic average of the interface magnetic field components,
Bnþ1=2

x;i;j;k ¼ ðB
nþ1=2
x;iþ1=2;j;k þ Bnþ1=2

x;i�1=2;j;kÞ=2 and similarly for the y- and z-components. The mass and momentum den-
sity are computed using a conservative update with the predictor fluxes from step 1
qnþ1=2
i;j;k ¼ qn

i;j;k þ
dt

2dx
ðF �x;i�1=2;j;k � F �x;iþ1=2;j;kÞ þ

dt
2dy
ðF �y;i;j�1=2;k � F �y;i;jþ1=2;kÞ þ

dt
2dz
ðF �z;i;j;k�1=2 � F �z;i;j;kþ1=2Þ:

ð48Þ

Step 6, update the solution from time level n to nþ 1. The hydrodynamic variables (mass, momentum and

energy density) are advanced using the standard the flux integral relation:
qnþ1
i;j;k ¼ qn

i;j;k þ
dt
dx

F nþ1=2
x;i�1=2;j;k � F nþ1=2

x;iþ1=2;j;k

� �
þ dt

dy
F nþ1=2

y;i;j�1=2;k � F nþ1=2
y;i;jþ1=2;k

� �
þ dt

dz
F nþ1=2

z;i;j;k�1=2 � F nþ1=2
z;i;j;kþ1=2

� �
ð49Þ
and the interface averaged normal components of the magnetic field are advanced using a Stokes loop integral,
for example the x-component of the equation is
Bnþ1
x;iþ1=2;j;k ¼ Bn

x;iþ1=2;j;k �
dt
dy

E
nþ1=2
z;iþ1=2;jþ1=2;k � E

nþ1=2
z;iþ1=2;j�1=2;k

� �
þ dt

dz
E

nþ1=2
y;iþ1=2;j;kþ1=2 � E

nþ1=2
y;iþ1=2;j;k�1=2

� �
ð50Þ
with similar expressions for the y- and z-components.
This completes the description of the 6-solve CTU algorithm. This relatively simple 3D integration algo-

rithm is second-order accurate and has the advantage over the 12-solve CTU algorithm that no source terms
need be included in the evolution of the interface normal components of the magnetic field. This algorithm is
designed in such a way that for grid-aligned flows it reduces exactly to the 2D CTU and 1D PPM integration
algorithms for problems involving the relevant symmetry. The downside is that we observe experimentally that
the algorithm is stable for CFL < 1=2. Hence, to a large extent the 6-solve and 12-solve algorithms show sim-
ilar computational cost: two time-steps with the 6-solve algorithm at a CFL number of 1/2 is nearly equivalent
to one time-step with the 12-solve algorithm with a CFL number of one.

5. Tests

In this section, we present and compare results obtained with both the 6-solve and 12-solve CTU + CT inte-
gration algorithm just described.
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5.1. Field loop advection

The advection of a weak magnetic field loop, a problem studied in [1], is a surprisingly difficult test for con-
servative finite volume methods applied to the ideal MHD equations. In particular, consider a field loop con-
fined to the ðx; yÞ-plane, i.e. Bz ¼ 0, and a constant advection velocity field with vz 6¼ 0. If care is not taken to
respect the balance between the MHD source terms in calculating the interface states, updating them with
transverse flux gradients, etc. one can find an erroneous and sometimes secular evolution of Bz. In fact any
scheme which is conservative but does not satisfy $ � B ¼ 0 will find erroneous evolution for Bz in this prob-
lem. Similarly if a conservative numerical algorithm can solve this magnetic field loop advection problem and
preserve the solution Bz ¼ 0 for all time, it also satisfies the $ � B ¼ 0 condition.

The test consists of a computational domain �0:5 6 x 6 0:5, �0:5 6 y 6 0:5, and �1 6 z 6 1, resolved on
a N � N � 2N grid with periodic boundary conditions. The hydrodynamical state is uniform with a density
q ¼ 1, pressure P ¼ 1, and velocity components ðvx; vy ; vzÞ ¼ ð1; 1; 2Þ. The initialization of the magnetic field
is most easily described in terms of a vector potential in the coordinate system ðx1; x2; x3Þ which is related
to the computational coordinate system ðx; y; zÞ via the rotation
Fig. 1.
for thr
x1 ¼ ð2xþ zÞ=
ffiffiffi
5
p

;

x2 ¼ y;

x3 ¼ ð�xþ 2zÞ=
ffiffiffi
5
p

:

ð51Þ
In particular, we choose A1 ¼ A2 ¼ 0 and
A3 ¼
B0ðR� rÞ for r 6 R;

0 for r > R;

�
ð52Þ
where B0 ¼ 10�3;R ¼ 0:3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
in the domain �0:5k1 6 x1 6 0:5k1, �0:5k2 6 x2 6 0:5k2. To sat-

isfy the periodic boundary conditions we choose k1 ¼ 2=
ffiffiffi
5
p

and k2 ¼ 1 and define
A3ðx1 þ nk1; x2 þ mk2; x3Þ ¼ A3ðx1; x2; x3Þ for all integers ðn;mÞ.

The time evolution of the volume-averaged magnetic energy density hB2i normalized to the initial (analytic)
value hB2i ¼

ffiffiffi
5
p

pR2=2
	 


B2
0 is plotted in Fig. 1. The magnetic energy density hB2i can be well fit as a power law

of the form hB2i ¼ Cð1� ðt=sÞaÞ where s ¼ ð3:22� 102; 3:68� 103; 2:65� 104Þ and a ¼ ð0:365; 0:328; 0:320Þ
for N ¼ ð32; 64; 128Þ, respectively. These values are quite comparable to the time constant s ¼ 1:061� 104

and exponent a ¼ 0:291 found in the 2D calculation.
For the specific case of a cylindrical magnetic field loop with translation invariance in the z-direction

ðo=oz ¼ 0Þ the 6-solve and 12-solve algorithms studied in this paper reduce exactly to the 2D algorithm pre-
sented in [1]. As such, the 3D algorithms presented here give the same solution as the 2D algorithm and pre-
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serve the solution Bz ¼ 0 for all time (we have explicitly tested that this is true with our implementation of the
method). With the axis of the cylindrical field loop is aligned along a non-special direction with respect to the
grid, preserving this property is non-trivial.

As a quantitative measure of the ability of the algorithm to preserve B3 ¼ 0 we plot the normalized error
hjB3ji=B0 in Fig. 1. This error is calculated by contracting the cell center magnetic field with a unit vector in the
x3-direction and computing the volume average of its absolute value. From this plot it is clear that the con-
vergence rate of hjB3ji=B0 as measured in either the initial conditions, or the solution at time = 1 is approxi-
mately first order. This behavior is consistent with the observation that the 3-component of the magnetic
energy is dominant on the axis and at the boundary of the magnetic cylinder where the current density is ini-
tially singular, as shown in Fig. 2. It is also worth noting that away from these regions, the solution preserves
the 3-component of the magnetic energy quite small. This would not be the case if care were not taken to bal-
ance the MHD source terms in the integration algorithm.

5.2. Linear wave convergence

Convergence of the errors in the propagation of linear amplitude, planar waves in a direction which is obli-
que to the grid provides a quantitative test of both the 6-solve and 12-solve CTU-CT MHD algorithms. The
problem is most easily described in a coordinate system ðx1; x2; x3Þ which is chosen such that the wave prop-
agates parallel to the x1-axis. In this coordinate system, the initial conserved variable state vector is given by
q0 ¼ �qþ eRp cos
2px1

k

� �
; ð53Þ
where �q is the mean background state, e ¼ 10�6 is the wave amplitude, and Rp is the right eigenvector in con-
served variables for wave mode p (calculated in the state �q). In order to enable others to perform the same tests
presented here and compare the results in a quantitative manner, we include the numerical values for the right
eigenvectors in the Appendix.

The mean background state �q is selected so that the wave speeds are well separated and there are no inher-
ent symmetries in the magnetic field orientation (when initialized on the grid). The density �q ¼ 1 and gas pres-
sure �P ¼ 1=c ¼ 3=5. The velocity component �v1 ¼ 1 for the entropy mode test and �v1 ¼ 0 for all other wave
modes. The transverse velocity components �v2 ¼ �v3 ¼ 0. The magnetic field components �B1 ¼ 1, �B2 ¼ 3=2,
and �B3 ¼ 0. With this choice, the slow-mode speed cs ¼ 1=2, the Alfvén speed ca ¼ 1, and the fast mode speed
cf ¼ 2 in the x1-direction.
Fig. 2. Thresholded image of the magnetic energy (left) and the 3-component of the magnetic energy, B2
3=2, at time = 1.



T.A. Gardiner, J.M. Stone / Journal of Computational Physics 227 (2008) 4123–4141 4133
The computational domain extends from 0 6 x 6 3:0, 0 6 y 6 1:5, and 0 6 z 6 1:5, is resolved on a
2N � N � N grid and uses periodic boundary conditions. Initializing this problem on the computational grid
is accomplished by applying a coordinate transformation
1

1

1

1

1

1

1

1

Fig. 3
algorit
x ¼ x1 cos a cos b� x2 sin b� x3 sin a cos b;

y ¼ x1 cos a sin bþ x2 cos b� x3 sin a sin b;

z ¼ x1 sin aþ x3 cos a

ð54Þ
from the ðx1; x2; x3Þ coordinate system to the ðx; y; zÞ coordinate system of the grid with sin a ¼ 2=3 and
sin b ¼ 2=

ffiffiffi
5
p

. With this choice, there is one wave period along each grid direction and the wavelength
k ¼ 1. The interface components of the magnetic field are initialized via a magnetic vector potential so as
to ensure $ � B ¼ 0.

The error in the solution is calculated after propagating the wave for a distance equal to one wavelength at
a time t ¼ k=c where c is the speed of the wave mode under consideration. For each component s of the con-
served variable vector q we calculate the L1-error with respect to the initial conditions
dqs ¼
1

2N 3

X
i;j;k

jqn
i;j;k;s � q0

i;j;k;sj ð55Þ
by summing over all grid cells ði; j; kÞ. We use the cell center components of the magnetic field in computing
this error. In Fig. 3, we plot the norm of this error vector
kdqk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

s

ðdqsÞ
2

r
ð56Þ
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4134 T.A. Gardiner, J.M. Stone / Journal of Computational Physics 227 (2008) 4123–4141
for the fast, Alfvén, slow and entropy modes. Both algorithms demonstrate a second-order convergence. With
the exception of the slow mode, the 6-solve algorithm shows lower errors than the 12-solve algorithm. Note
that the choice of maximum resolution in the convergence study for each algorithm and wave mode was se-
lected on the basis of the ‘‘cost” of the computation.

5.3. Circularly polarized Alfvén wave

The propagation of a circularly polarized Alfvén wave in a periodic domain provides another quantitative
test since such waves are an exact nonlinear solution to the ideal MHD equations [19]. Although for some
parameters circularly polarized Alfvén waves are susceptible to a parametric instability [12,10], for the param-
eters used here, [19], we find no indication of instability.

As with the linear wave propagation study presented in Section 5.2, the initial conditions are most easily
described in a coordinate system ðx1; x2; x3Þ which is chosen such that the wave propagates parallel to the
x1-axis. In this coordinate system, the magnetic field components B1 ¼ 1;B2 ¼ 0:1 sinð2px1=kÞ, and
B3 ¼ 0:1 cosð2px1=kÞ. The velocity components v1 ¼ ð0; 1Þ for traveling or standing Alfvén waves, respectively,
v2 ¼ 0:1 sinð2px1=kÞ, and v3 ¼ 0:1 cosð2px1=kÞ. The mass density q ¼ 1 and the gas pressure P ¼ 0:1, hence
b ¼ 2P=B2 � 0:2.

The computational domain is identical to that used in Section 5.2. We use the coordinate transformation
given by Eq. (54) and a magnetic vector potential to initialize the magnetic fields so as to ensure $ � B ¼ 0. It is
worth noting that this approach will necessarily result in magnetic pressure perturbations as a result of trun-
cation error in initializing the magnetic field on the grid. Since B2

?=P ¼ 0:1 this truncation error in initializa-
tion will drive compressive waves. Note that with this set of initial conditions and v1 ¼ 0 the Alfvén wave will
travel a distance of one wavelength k in a time t ¼ 1.

As a quantitative measure of the solution accuracy, we present in Fig. 4 the norm of the L1-error vector (as
defined in Eq. (56)) after propagating for a time t ¼ 1 for both standing and traveling wave modes. From this
figure, we see that both traveling and standing circularly polarized Alfvén waves converge with second-order
accuracy for both integration algorithms. The traveling wave mode shows a larger error amplitude relative to
the standing mode, but it is worth noting that (while not shown here) the increase is fairly uniform over the
components of the error vector. The 6-solve and 12-solve algorithms show quite comparable errors for both
standing and traveling wave modes. When using a CFL number of 0.4, the 12-solve and 6-solve algorithms
result in nearly identical errors. Increasing the CFL number to 0.8 with the 12-solve algorithm results in a
slightly reduced traveling wave error, and increased standing wave error. These results indicate that the dom-
inant difference in the L1-error between the 6-solve and 12-solve algorithms results from the CFL dependence
of the truncation error.
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Fig. 4. L1-error norm for the 6-solve and 12-solve integration algorithms for both standing (left) and traveling (right) circularly polarized
Alfvén waves. In particular note the dominant difference between the 12-solve and 6-solve errors is attributable to the CFL dependence.
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As a qualitative measure of the solution accuracy, we present in Fig. 5 scatter plots of B2 versus x1 for both
standing and traveling wave modes after propagating for a time t ¼ 5 using the 6-solve integration algorithm.
These plots are constructed using the cell center components of the magnetic field, the cell center position and
the coordinate transformation given by Eq. (54). As a result of the fact that the wave is rotated with respect to
the grid, there are many grid cells with the same cell center x1-position. Hence, since these plots include every
grid point in the grid, the lack of scatter in the plots demonstrates that the Alfvén waves retain their planar
symmetry throughout the calculation. Unfortunately, it is difficult to use the results presented here to make
direct contact with solutions presented in the literature due to the scarcity of published 3D test solutions.
For analogous plots in a 2D system see [19,15,1].

As a final measure of the solution accuracy and convergence, we present results for the dissipation of mag-
netic helicity in the case of a traveling circularly polarized Alfvén wave. We note that this is not the cleanest
possible test, since with periodic boundary conditions and a mean magnetic field, it does not appear to be gen-
erally possible to define a magnetic helicity which is conserved [5]. Nevertheless, we find that following [4] the
magnetic helicity evolution associated with the fluctuating components of the magnetic field gives an interest-
ing constraint on the problem considered here. In particular, let B0 ¼ hBi (where angle brackets denote a spa-
tial mean) and b ¼ B� B0 denote the mean and fluctuating components of the magnetic field, respectively.
Also, define the magnetic vector potential associated with the fluctuating field as b ¼ $� a. It is worth noting
that as a result of periodic boundary conditions, B0 is time independent and the magnetic helicity associated
with the fluctuating field H ¼ hb � ai is gauge invariant. It follows that the time evolution of the magnetic helic-
ity is given by
d

dt
hb � ai ¼ �2hE � bi; ð57Þ
where E is the electric field. Assuming ideal MHD, this equation can also be written as
d

dt
hb � ai ¼ �2B0 � hv� bi: ð58Þ
From this expression it is clear for a circularly polarized Alfvén wave the magnetic helicity should be con-
served with hb � ai ¼ B2

?=k.
In Fig. 6, we present the time evolution of the normalized magnetic helicity eH ¼ ðk=B2

?Þhb � ai for a trav-
eling Alfvén wave using the 6-solve integration algorithm for a variety of resolutions. The plots in this figure
show two basic phenomena, dissipation and weak oscillations. The oscillations are an indication that the cir-
cularly polarized Alfvén wave is not resolved exactly. Certain features regarding the oscillations are worth
mentioning. First, the oscillation period s ¼ 1=2 independent of the grid resolution and whether the Alfvén
wave is standing or traveling with respect to the grid. Second, the amplitude of the oscillations in the helicity
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varies with resolution proportional to N�2. Third, the oscillations are consistent in both amplitude and phase
with the independently measured volume average quantity B0 � hv� bi. These details support the conclusion
that the oscillations are a result of truncation error in resolving the wave.

5.4. MHD Riemann problem inclined to the grid

The Riemann problem is a favorite test for numerical algorithms since it can be chosen to study smooth
flows, discontinuous flows, or a combination thereof. To make the test multidimensional, the normal direction
of the initial interface is chosen such that it has no special orientation with respect to the computational grid.
In this configuration it provides a measure of the ability of the computational algorithm to faithfully repro-
duce the 1D solution on the large scale, despite the fact that on the scale of grid cells the flow contains mul-
tidimensional, interacting waves.

We begin by choosing a coordinate system ðx1; x2; x3Þ with the Riemann problem interface located at x1 ¼ 0
and will use the terms left and right states to refer to the regions x1 < 0 and x1 > 0, respectively. To map the
initial conditions to the computational domain, we apply the coordinate transformation in Eq. (54) with the
choice of rotation angles described below. This coordinate transformation can be inverted to read
x1 ¼ x cos a cos bþ y cos a sin bþ z sin a;

x2 ¼ �x sin bþ y cos b;

x3 ¼ �x sin a cos b� y sin a sin bþ z cos a:

ð59Þ
Using the fact that the initial conditions and solution to the Riemann problem are a function of the x1-coor-
dinate alone, the solution vector qðxþ sÞ ¼ qðxÞ for a translation vector s which satisfies x1ðxþ sÞ ¼ x1ðxÞ.
Making use of Eq. (59) we find that the continuous set of translation vectors s, for which the solution is invari-
ant, satisfies the equation
sx cos a cos bþ sy cos a sin bþ sz sin a ¼ 0: ð60Þ

For the problem at hand we are interested in the discrete set of translation vectors for which

ðsx; sy ; szÞ ¼ ðnxdx; nydy; nzdzÞ where ðnx; ny ; nzÞ are integers and ðdx; dy; dzÞ are the grid cell size in each direc-
tion. Making this substitution, and rearranging terms we find
nx þ ny
dy
dx

tan bþ nz
dz tan a
dx cos b

¼ 0: ð61Þ
We next choose the rotation angles ða; bÞ such that
dy
dx

tan b ¼ rx

ry
and

dz tan a
dx cos b

¼ rx

rz
; ð62Þ
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Fig. 7. Solution to the Riemann problem in a direction oblique to the grid.
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where ðrx; ry ; rzÞ are integers. With this choice, our equation for translation invariance becomes
nx

rx
þ ny

ry
þ nz

rz
¼ 0: ð63Þ
Note that the translation invariance described by Eq. (63) was constructed by considering a point transla-
tion symmetry and as such applies equally well to volume and interface averaged quantities. That is, there are
no approximations involved in the statement that qi;j;k ¼ qiþnx;jþny ;kþnz

for ðnx; ny ; nzÞ which satisfy (63). Also
note that one coordinate direction, say the x-direction, can be isolated as the principle simulation direction
and the transverse directions can be made as small as ðry ; rzÞ. Finally, note that the translation invariance rela-
tion (63) is the key relation for mapping computational grid cells to ghost cells for imposing boundary
conditions.

The specific Riemann problem we consider in this section is presented in [16] in test problem 2a. In the
ðx1; x2; x3Þ coordinate system, the left state is initialized with q ¼ 1:08, ðv1; v2; v3Þ ¼ ð1:2; 0:01; 0:5Þ;
ðB1;B2;B3Þ ¼ ð2=

ffiffiffiffiffiffi
4p
p

; 3:6=
ffiffiffiffiffiffi
4p
p

; 2=
ffiffiffiffiffiffi
4p
p
Þ and P ¼ 0:95. The right state is initialized with

q ¼ 1:0; ðv1; v2; v3Þ ¼ ð0; 0; 0Þ; ðB1;B2;B3Þ ¼ ð2=
ffiffiffiffiffiffi
4p
p

; 4=
ffiffiffiffiffiffi
4p
p

; 2=
ffiffiffiffiffiffi
4p
p
Þ and P ¼ 0:95. This problem is then

mapped to the 3D domain with the rotation parameters ðrx; ry ; rzÞ ¼ ð1; 2; 4Þ. The computational grid has
ðN x;Ny ;N zÞ ¼ ð768; 8; 8Þ grid cells covering the domain �0:75 6 x 6 0:75; 0 6 y 6 1=64; 0 6 z 6 1=64 and
hence has a resolution of dx ¼ dy ¼ dz ¼ 1=512.

The solution at time = 0.2 is presented in Fig. 7 using the 6-solve CTU algorithm. These plots include the
cell-center data from every grid cell using the coordinate transformation in Eq. (54). Note in these plots is that
since Ny > ry and N z > rz there are multiple grid cells with the same cell-center x1-position. Therefore, the lack
of scatter in these plots indicates that the algorithm retains the planar symmetry throughout the simulation. A
comparison of the results presented here to the 1D solution using the underlying PPM algorithm, with the
same resolution, i.e. dx ¼ 1=512, indicates that the 3D solution has dissipation characteristics which are nearly
identical to the 1D algorithm. The dominant difference between the 1D and 3D solutions is the presence of
oscillations at the slow, Alfvén and fast mode discontinuities.

One question which has received a good deal of attention with this class of problem is the ability of the
computational algorithm to maintain the parallel component of the magnetic field, B1, equal to a constant.
It is important to point out that oscillations are likely unavoidable unless the orientation of the Riemann
problem is chosen to be aligned in a special direction with respect to the grid. As evidence of this fact, we note
that the in the initial conditions, the cell-center B1-component of the magnetic field shows an oscillation with
an amplitude of approximately 8:26� 10�3 despite the fact that the interface averaged magnetic fields were
initialized with an ‘‘exact” integral average using a magnetic vector potential. This oscillation is therefore a
result of the discretization relating the cell-center and interface averaged magnetic field components. In the
initial conditions, as well as the solution at time = 0.2, the oscillations in B1 occur wherever the transverse
components of the magnetic field rotate over a small scale such as the initial discontinuity, and the resultant
fast, Alfvén and slow mode discontinuities. Finally, we note that just as in the 2D paper [1], the oscillations in
the parallel component of the magnetic field can be eliminated by restricting the solution to ‘‘macrocells”. This
operation effectively aligns the x1-direction with the macrocell [1,1,1] direction.

5.5. MHD blast wave

Our final test problem is the explosion of a centrally over pressurized region into a low pressure, low b
ambient medium. This test combines shocked flows, smooth flow regions, and strong magnetic fields. While
the results are not particularly quantitative in their measure of the accuracy, this test is a good measure of
the robustness of the integration algorithm. Variants on this problem have been presented by a number of
authors [20,3,13,1] and here we choose to use the parameters given by [13] for a 3D domain.

The computational domain extends from �0:5 6 x 6 0:5, �0:5 6 y 6 0:5 and �0:5 6 z 6 0:5. The density
q ¼ 1, the velocity v = 0, and the magnetic field components Bx ¼ Bz ¼ 10=

ffiffiffi
2
p

and By ¼ 0. Within a sphere of
radius R ¼ 0:125 about the origin the gas pressure P ¼ 100 and b ¼ 2P=B2 ¼ 2. Outside of this sphere, the gas
pressure P ¼ 1 and b ¼ 2� 10�2. These initial conditions are evolved until a time t ¼ 0:02 using a 2003 com-
putational grid.



Fig. 8. Linearly scaled grey-scale images of the evolved state (time = 0.02) for the MHD blast wave problem. The density (top left) ranges
from 0.190 (white) to 2.98 (black). The gas pressure (top right) ranges from 1.0 (white) to 42.4 (black). The magnetic energy density
(bottom left) ranges from 25.2 (white) to 64.9 (black). The kinetic energy density (bottom right) ranges from 0.0 (white) to 33.1 (black).
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In Fig. 8, we present images of the density, pressure, magnetic and kinetic energy density sliced along the
y ¼ 0 plane at the end time. The general structure of the solution is the same as one finds in the 2D calculation.
Namely, the outermost surface in this expanding shell is a fast-shock which is only weakly compressive and
energetically is dominated by the magnetic field. Interior to this, one finds two dense shells of gas which prop-
agate parallel to the magnetic field. These shells are bounded by a slow-mode shock and contact surface (sep-
arating the initially hot, interior gas from the surrounding cool ambient medium) on the outer and inner
surfaces, respectively. The maximum compression of the ambient gas by the slow-mode shock is approxi-
mately 3.3, the same as was found in the 2D calculation. The fact that the 2D and 3D calculations show quan-
titatively similar compression in the slow-mode shock is an indication that their motion is approximately 1D,
i.e. parallel to the magnetic field.

These results demonstrate that the 6-solve integration algorithm is a robust algorithm, capable of evolving
shocked flows with b � 10�2. Moreover, since the integration algorithm is unsplit, it preserves the symmetry of
the initial conditions naturally.
6. Conclusion

In this paper, we have presented an algorithm for 3D MHD which combines the (6-solve) corner transport
upwind integration algorithm with the method of constrained transport for evolving the magnetic field. This
algorithm is a natural extension, and generalization of the 2D algorithm [1]. In addition, we have outlined the
essential elements to constructing a 12-solve CTU with CT integration algorithm for MHD and included
results of this algorithm in Section 5. Both the 6-solve and 12-solve algorithms are found to be accurate
and robust for approximately the same computational cost. As a result, we generally prefer the 6-solve algo-
rithm as a result of its simplicity and smaller memory footprint.
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The 3D MHD PPM interface states algorithm presented in this paper is a new and essential element of the
integration algorithms. We have shown here that this is a natural extension of the 2D MHD PPM interface
states algorithm presented in [1] and that it reduces identically to the 2D algorithm in the grid-aligned, plane-
parallel limit. The 3D MHD PPM interface states algorithm was designed in such a way as to satisfy a mul-
tidimensional balance law involving what we have referred to here as MHD source terms. Failure to satisfy
this balance law is found to result in erroneous and secular evolution of the magnetic field under quite general
conditions, e.g. the advection of a high b magnetic field loop.

We have also presented a variety of test results for both the 6- and 12-solve MHD CTU CT integration
algorithms. These test problems were selected so as to enable a comparison with previously published results,
as well as to introduce new, quantitative measures of the solution accuracy. One interesting result of these tests
is the observation that the dominant difference in the L1-error for the 6- and 12-solve algorithm convergence
on smooth wave propagation is attributable to the CFL number dependence. Throughout this section we have
included the necessary information so as to enable other researchers involved in developing or applying MHD
algorithms to make a quantitative, as well as qualitative, comparison with the results in this paper.

Finally, it is worth noting that the integration algorithms presented here have been thoroughly tested on a
great many test problems not included here. These include problems which are also of interest for their scien-
tific merit. Examples include a study of the magneto-rotational instability [2] and the MHD Raleigh Taylor
instability [18]. In a future paper, we will detail our approach to combining the integration algorithms pre-
sented here with the methods of static and adaptive mesh refinement.
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Appendix A. Linear wave right eigenvectors

In order to enable others to perform the linear wave convergence test presented in Section 5.2 and compare
their results in a quantitative manner, we include the numerical values for the right eigenvectors here. In the
wave-aligned coordinate system ðx1; x2; x3Þ the conserved variable vector and right eigenvectors (labeled
according to their propagation velocity) are given by
q ¼
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